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Convergence of a PI Coordination Protocol
in Networks with Switching Topology and Quantized Measurements

Enric Xargay, Ronald Choe, Naira Hovakimyan, and Isaac Kaminer

Abstract— This paper analyzes the convergence properties of
a distributed proportional-integral protocol for coordin ation of
a network of agents with multiple leaders, dynamic information
flow, and quantized measurements. We show that the integral
term of the protocol allows the follower agents to ‘learn’ the
reference rate, rather than have it available a priori, and also
provides disturbance rejection capabilities.

I. I NTRODUCTION

Worldwide, there has been growing interest in the use of
autonomous vehicles to execute complex missions without
constant supervision of human operators. A key enabling
element for the execution of such missions is the availability
of advanced strategies for cooperative motion control of
autonomous vehicles. In [1], for example, the authors address
the development of robust strategies for cooperative missions
in which a fleet of UAVs is required to follow collision-free
paths and arrive at their respective final destinations at the
same time. The distributed protocol used for group coordi-
nation, which was first introduced in [2], has a proportional-
integral (PI) structure in which each agent is only required
to exchange its coordination state with its neighbors, and the
constant reference rate is only available to a single leader.
The integral term in the consensus algorithm allows the
follower UAVs to ‘learn’ the reference rate from the leader.

A generalization of this PI protocol was proposed in [3],
where the authors developed an adaptive algorithm to recon-
struct a time-varying reference velocity that is availableonly
to a single leader. The paper used a passivity framework to
show that a network of nonlinear agents with fixed connected
topology asymptotically achieves coordination. The work
in [4] also used a (discrete-time) PI protocol to synchronize
networks of clocks with fixed connected information flow. In
this application, the integral part of the controller was critical
to eliminate the different initial clock offsets.

This paper modifies the PI protocol in [1], [2] to include
multiple leaders, and analyzes the convergence properties of
the protocol for coordination of a network of agents with
dynamic information flowand quantized measurements, a
topic that has received increased attention in recent years[5]–
[10]. On one hand, the use of multiple leaders in the
protocol improves robustness to a single-point failure. On
the other hand, the use of finite-rate communication links
and/or coarse sensors motivates the interest in quantized
consensus problems. The main contribution of this paper is
twofold. First, we present lower bounds on the convergence
rate of the collective dynamics as a function of the number

Research is supported by AFOSR, ARO, and ONR.
E. Xargay, R. Choe, and N. Hovakimyan are with UIUC, Urbana, IL

61801, e-mail:{xargay,choe19,nhovakim}@illinois.edu. I. Kaminer is with
NPS, Monterey, CA 93943, email: kaminer@nps.edu.

of leaders and thequality of service(QoS) of the network,
which in the context of this work represents a measure of the
level of connectivity of the dynamic graph that captures the
underlying network topology. And second, we analyze the
existence of equilibria as well as the convergence properties
of the collective dynamics under quantized feedback.

The paper is organized as follows. SectionII describes
the problem formulation. SectionIII presents the PI protocol
adopted in this paper and analyzes its convergence properties.
In Section IV, we study the collective dynamics under
quantization. Simulation results are presented in SectionV,
while SectionVI summarizes concluding remarks.

II. PROBLEM FORMULATION

Consider a network ofn integrator-agents

ẋi(t) = ui(t)+di, xi(0) = xi0, i ∈ In := {1, . . . , n}, (1)

with dynamic information flowG0(t) := (V0, E0(t)). In the
above formulation,xi(t) ∈ R is thecoordination stateof the
ith agent,ui(t) ∈ R is its control input, anddi ∈ R is an
unknown constant disturbance.

The control objective is to design adistributed protocol
that solves the followingcoordination problem:

xi(t)− xj(t)
t→∞−→ 0 , ∀ i, j ∈ In , (2a)

ẋi(t)
t→∞−→ ρ , ∀ i ∈ In , (2b)

whereρ is the desired (constant) reference rate.
The network and the communications between agents

satisfy the following assumptions:
Assumption 1:The ith agent can only exchange informa-

tion with a set of neighboring agents, denoted byN 0
i (t).

Assumption 2:Communications between two agents are
bidirectional (G0(t) is undirected) and the information is
transmitted continuously with no delays.

Assumption 3:The connectivity ofG0(t) at timet satisfies
the persistency of excitation (PE)-like condition

1

n

1

T

∫ t+T

t

QnL0(τ)Q
⊤
ndτ ≥ µIn−1 , ∀ t ≥ 0 , (3)

whereL0(t) ∈ R
n×n is the piecewise-constant Laplacian of

the graphG0(t), andQn is any(n− 1)× n matrix satisfying
Qn1n = 0 andQnQ

⊤
n = In−1, with 1n being the vector

in R
n whose components are all1. The parametersT > 0

andµ ∈ [0, 1] characterize the QoS of the communications
network, which in the context of this paper represents a mea-
sure of the level of connectivity of the dynamic graphG0(t).

Remark 1:Condition (3) requires only the graphG0(t) to
be connected in an integral sense, not pointwise in time. In
fact, the graph may be disconnected during some interval of



time or may even fail to be connected at all times. Similar
type of conditions can be found in [11] and [12].

III. D ISTRIBUTED CONSENSUSPROTOCOL

A. Addition of Virtual Agents

The consensus protocol adopted in this paper introduces
nℓ virtual agents(1 ≤ nℓ ≤ n) in the network, associated
with nℓ agents. These virtual agents are implemented innℓ

distinct agents and have the following dynamics:

ẋℓi(t) = uℓi(t), xℓi(0) = xℓi0, i ∈ Iℓ := {1, . . . , nℓ},
where the virtual control lawsuℓi(t), i ∈ Iℓ, are yet to be
defined. Without loss of generality, we assume that these
virtual agents are implemented in agents1 to nℓ, that is,
the ith virtual agent is implemented in theith agent. In
the context of this paper, thesenℓ agents are referred to
as leaders, while the remaining agents arefollowers.

To limit the amount of information transmitted over the
network, each leader is only allowed to exchange the state
of its virtual agent with its neighbors; in other words, the
ith leader can only transmit the statexℓi(t), rather than
transmitting bothxℓi(t) and xi(t). Finally, we note that
the agent and the virtual agent of a leader can exchange
information uninterruptedly, as these two agents do not
communicate over the network. Figure1 presents an example
illustrating the addition of two virtual agents in a network
of three agents.

1

2

3

(a) Original network.

1

2

3

ℓ1

ℓ2

leader

leader

follower

fixed links

(b) Network with two virtual agents.

Fig. 1. Addition ofnℓ = 2 virtual agents in a network ofn = 3 agents.

The inclusion of thesenℓ virtual agents results in a newex-
tended networkof N := n+ nℓ agents with a new dynamic
topologyG(t). According to the description above, this new
topology is characterized by the following neighboring sets:

Ni := {ℓi} , i ∈ Iℓ ,
Ni(t) := (N 0

i (t) \ Iℓ) ∪ Li(t) , i /∈ Iℓ ,
Nℓi(t) := (N 0

i (t) \ Iℓ) ∪ Li(t) ∪ {i} , i ∈ Iℓ ,
where the vertex setLi(t) is defined as

Li(t) := {ℓj : j ∈ (N 0
i (t) ∩ Iℓ)} .

The LaplacianL(t) of the new extended graph with vertex
setV := {ℓ1, . . . , ℓnℓ, 1, . . . , n} is given by

L(t) = P⊤
ℓ

[

0 0
0 L0(t)

]

Pℓ +Lv ∈ R
N×N ,

wherePℓ is the (0, 1)-permutation matrix

Pℓ :=

[

0 In
ℓ

0

In
ℓ

0 0

0 0 In−n
ℓ

]

∈ R
N×N ;

while Lv is defined as

Lv :=

[

Inℓ
−Inℓ

0

−Inℓ
Inℓ

0

0 0 0

]

∈ R
N×N .

The lemma below shows that the connectivity of the
graphG(t) satisfies a PE-like condition similar to (3).

Lemma 1:Consider a network withn agents andnℓ vir-
tual agents, added according to the description above. If the
connectivity of the original network satisfies Assumption3,
then the connectivity of the extended network verifies

1

N

1

T

∫ t+T

t

QNL(τ)Q⊤
Ndτ ≥ µnℓ

IN−1, ∀ t ≥ 0,

where QN is any (N − 1)×N matrix such that
QN1N = 0 andQNQ⊤

N = IN−1; while the constantµnℓ

characterizes the QoS of the extended network. The para-
materµnℓ

can be determined recursively from the relation

µi = F (n+ i− 1, µi−1) , i = 1, . . . , nℓ ,

together with the initial conditionµ0 = µ, and

F (k, xµ) :=
(kxµ+2)−

√
(kxµ+2)2−4xµ(k+1)

2(k+1) .

Proof. The proof is omitted due to space limitations.�

Remark 2:The concept ofvirtual leaderis quite common
in the consensus literature, where it is understood as an
additional agent running in open loop and providing an
external consensus reference state to a subgroup of fol-
lower agents; see [13]–[16] and references therein. In our
framework, thevirtual agents (or virtual leaders) play a
different role in the network protocol and their dynamics
are affected by other agents (virtual and non-virtual). From
a functional perspective, the virtual agents in our framework
are equivalent to the “subgroup leaders” in the work reported
in [15]. The key reason for implementing these virtual agents
as part of our consensus protocol is to provide a set of agents
with disturbance-free dynamics, which –as will become clear
later– allow to effectively solve the coordination problem(2).

B. Proportional-Integral Protocol

To solve the consensus problem (2), we adopt the protocol

uℓi = kP
∑

j∈Nℓi
(xj − xℓi) + ρ, i ∈ Iℓ, (4)

ui = kP
∑

j∈Ni
(xj − xi) + χi, i ∈ In, (5)

χ̇i = kI
∑

j∈Ni
(xj − xi) , χi(0) = χi0, i ∈ In, (6)

where kP > 0 and kI > 0 are coordination gains. This
protocol has a PI structure in which each agent is only
required to exchange its coordination statex•(t) with its
neighbors, and the reference rateρ is only available to the
nℓ leaders. We also note that the virtual agents adjust their
dynamics according to information exchanged with their
neighboring agents.

The protocol (4)-(6) can be rewritten in compact form as

u(t) = −kPL(t)x(t) +
[

ρ1nℓ

χ(t)

]

,

χ̇(t) = −kIC
⊤L(t)x(t) , χ(0) = χ0 ,

(7)

whereu(t), x(t), andχ(t) are defined as

u(t) := [uℓ1(t), . . . , uℓn(t), u1(t), . . . , un(t)]
⊤ ∈ R

N ,

x(t) := [xℓ1(t), . . . , xℓn(t), x1(t), . . . , xn(t)]
⊤ ∈ R

N ,

χ(t) := [χ1(t), . . . , χn(t)]
⊤ ∈ R

n ;

andC⊤ := [ 0 In ] ∈ R
n×N .



C. Collective Dynamics and Convergence Analysis

Protocol (7) leads to theclosed-loop collective dynamics

ẋ(t) = −kPL(t)x(t) +
[

ρ1nℓ

χ(t)+d

]

, x(0) = x0 ,

χ̇(t) = −kIC
⊤L(t)x(t) , χ(0) = χ0 ,

where d := [d1, . . . , dn]
⊤ ∈ R

n is the disturbance vector.
Note that the solutions (in the sense of Carathéodory [17])
of the collective dynamics above exist and are unique, since
the LaplacianL(t) is piecewise constant int.

To analyze the convergence properties of the algorithm (7),
we reformulate the consensus problem (2) into a stabilization
problem. To this end, we define theprojection matrixΠN as

ΠN := IN − 1N1
⊤

N

N
∈ R

N×N ,

and note that the following equalities hold:

ΠN = Π
⊤
N = Π

2
N , Q⊤

NQN = ΠN ,

L(t)ΠN = ΠNL(t) = L(t) .

Moreover, we have that the spectrum of the matrix

L̄(t) := QNL(t)Q⊤
N ∈ R

(N−1)×(N−1)

is equal to the spectrum of the extended LaplacianL(t)
without the eigenvalueλ1 = 0 corresponding to the eigen-
vector 1N . Finally, we define theconsensus error state
ζ(t) := [ζ⊤

1 (t), ζ⊤
2 (t)]⊤ as

ζ1(t) := QNx(t) ∈ R
N−1 ,

ζ2(t) := χ(t)− ρ1n + d ∈ R
n .

Note that, by definition,ζ1(t) = ζ2(t) = 0 is equivalent to
x(t) ∈ span{1N} and ẋ(t) = ρ1N .

With the above notation, the closed-loop collective dynam-
ics can be reformulated as (see Appendix)

ζ̇(t) = Aζ(t)ζ(t) , ζ(0) = ζ0 , (8)

whereAζ(t) ∈ R
(N+n−1)×(N+n−1) is given by

Aζ(t) :=
[

−kP L̄(t) QN C

−kIC
⊤Q⊤

N
L̄(t) 0

]

.

Next we show that, if the connectivity of the graphG0(t)
verifies the PE-like condition (3), then protocol (7) solves the
consensus problem (2). The next theorem proves this result.

Theorem 1:Consider the collective dynamics (8) and sup-
pose thatG0(t) verifies the PE-like condition (3) for some
parametersµ and T . Then, for anykβ ≥ 2, there exist
coordination gainskP andkI such that the inequality

‖ζ(t)‖ ≤ αζ‖ζ(0)‖ e−λct

holds for some positive constantαζ ∈ (0,∞), and with

λc ≥ λ̄c :=
kPNµnℓ

(1+kPNT )2 (1 + kβ
N
nℓ
)−1 .

Also, the coordination states and their rates of change satisfy

limt→∞ |xi(t)− xj(t)| = 0 , i, j ∈ In ,

limt→∞ ẋi(t) = ρ , i ∈ In .
Proof. The proof, which is omitted here due to space
limitations, is similar to the proof of Lemma 3 in [1]. �

Remark 3:Theorem1 above indicates that the QoS of
the network (characterized byT andµ) limits the achievable
(guaranteed) rate of convergence of the closed-loop collective
dynamics. According to the theorem, for a given QoS of the

network, the maximum (guaranteed) rate of convergenceλ̄∗
c

is achieved by settingkP = 1
TN

, which results in

λ̄∗
c :=

µnℓ

4T

(

1 + kβ
N
nℓ

)−1

.

We also note that, asT goes to zero (graph connected
pointwise in time), the convergence rate can be set arbitrarily
fast by increasing the coordination gainskP andkI .

IV. CONVERGENCE UNDERQUANTIZATION

In this section we analyze the stability and performance
characteristics of the distributed PI protocol presented in
the previous section when the agents exchange quantized
measurements. For the sake of simplicity, in this paper we
consider onlyuniform quantizerswith step size∆.

A. Protocol and Collective Dynamics

When only quantized information from the other agents is
available, the PI protocol introduced in (7) becomes

u = −kP

(

D̃(t)x− Ã(t) q(x)
)

+
[

ρ1nℓ

χ

]

,

χ̇ = −kIC
⊤
(

D̃(t)x− Ã(t) q(x)
)

, χ(0) = χ0,
(9)

where q(x(t)) ∈ Z
N∆ is the quantized coordination state

q(x(t)) := [ q∆(xℓ1(t)), . . . , q∆(xn(t))]
⊤ ,

with q∆(·) : R → Z∆ being defined as

q∆(ξ) := sgn(ξ)∆
⌊

|ξ|
∆ + 1

2

⌋

, ξ ∈ R .

The time-varying matrices̃D(t) andÃ(t) are defined as

D̃(t) := D(t) +Dℓ , Ã(t) := A(t) +Dℓ ,

whereD(t) andA(t) are respectively thedegreeandadja-
cency matricesof L(t), while Dℓ is given by

Dℓ :=

[

0 −Inℓ
0

−Inℓ
0 0

0 0 0

]

∈ R
N×N .

Note that only the information exchanged over the network
is subject to quantization; in fact, each agent has access to
its own unquantized state, and leaders also have access to
the unquantized state of its virtual agent (and viceversa).

Then, noting thatL(t) = D̃(t)− Ã(t), the collective dy-
namics can be written as

ẋ = −kPL(t)x+
[

ρ1nℓ

χ+d

]

+ kP Ã(t)ex , x(0) = x0 ,

χ̇ = −kIC
⊤L(t)x+ kIC

⊤Ã(t)ex , χ(0) = χ0 ,

where ex(t) := q(x(t))− x(t) is the quantization error
vector. In terms of the consensus error stateζ(t), the
collective dynamics can be expressed as

ζ̇(t) = Aζ(t)ζ(t) +Bζ(t)ex(t) , ζ(0) = ζ0 , (10)

whereAζ(t) was introduced in (8) andBζ(t) is given by

Bζ(t) :=
[

kPQNÃ(t)

kIC
⊤Ã(t)

]

.

Note that, in this case, the right-hand side of the collective
dynamics is discontinuous not only due to the time-varying
topology, but also due to the presence of quantized states.
As proven in [8], Carathéodory solutions might not exist
for quantized consensus problems, implying that a weaker
concept of solution has to be considered. Similar to [8], we
will consider solutionsin the sense of Krasovsky[17].



To show that Krasovsky solutions to (10) exist (at least)
locally, we note that, during continuous evolution of the
system between “quantization jumps”, the network dynam-
ics (10) are linear, with the quantized stateq(x(t)) acting
as a bounded exogenous input. This implies that the solu-
tionsx(t) are locally bounded (nofinite escape timeoccurs).
Then, local existence of Krasovsky solutions is guaranteed
by the fact that the right-hand side of (10) is measurable and
locally bounded [17]. At this point, we cannot claim that
Krasovsky solutions to (10) are complete; for this, we will
need to prove that solutions are bounded (see Theorem2).

B. (Krasovsky) Equilibria

Before investigating the convergence properties of the
quantized collective dynamics (10), in this section we an-
alyze the existence of equilibria for these dynamics. To
simplify the analysis, we assume (only in this section) that
the network topology is static and connected. Under this as-
sumption, one can easily show that the unquantized collective
dynamics (8) have one isolated equilibrium point atζeq = 0.
However, when quantized information is exchanged over the
network,ζeq = 0 is not an equilibrium point of the collective
dynamics anymore and other (undesirable) equilibria might
exist, depending on the step size of the quantizers.

To show this, we first notice thaṫζ(t) ≡ 0 is equivalent
to ẋ(t) ∈ span{1N} and χ̇(t) ≡ 0 holding simultaneously.
Hence,ζeq := [ζ⊤

1eq, ζ
⊤
2eq]

⊤ is an equilibrium of (8) if

γ(t)1N ∈ K
(

−kP

(

D̃xeq(t)− Ã q(xeq(t))
)

+
[

ρ1nℓ

χeq+d

])

,

0 ∈ K
(

−kIC
⊤
(

D̃xeq(t)− Ã q(xeq(t))
))

,

whereγ(t) ∈ R is an arbitrary signal;xeq(t) is a continuous
coordination-state trajectory satisfyingζ1eq = QNxeq(t);
while χeq := ζ2eq − ρ1n + d. The second inclusion above
and continuity ofxeq(t), along with the fact that the network
is assumed to be static and connected, preclude the existence
of equilibria involving time-varying coordination-statetrajec-
tories, i.e.γ(t) ≡ 0 (or equivalentlyẋeq(t) ≡ 0). Then, the
set of (Krasovsky) equilibria of (8) can be defined as

E :=

{

(xeq,χeq) ∈ R
N × R

n :

0 ∈ K
([

−kP (D̃xeq−Ã q(xeq))+
[

ρ1nℓ

χeq+d

]

−kIC
⊤(D̃xeq−Ã q(xeq))

])}

. (11)

Next, we show that, under sufficiently fine quantization,
the setE is empty.

Lemma 2:Consider the quantized collective dynam-
ics (10), and assume the network topology is static and
connected. If the step size of the quantizers satisfies

∆ < 2nℓ

n(n−1)
|ρ|
kp

, (12)

then the set of equilibriaE is empty.
Proof. The proof is omitted due to space limitations.�

C. Convergence Analysis

Next we show that, if the connectivity ofG0(t) verifies the
PE-like condition (3), then protocol (9) solves the consensus
problem (2) in a practical sense. Moreover, the consensus

error state degrades gracefully with the value of the quantizer
step size. The next theorem summarizes this result.

Theorem 2:Consider the closed-loop collective dynam-
ics (10) and suppose that the topologyG0(t) verifies the PE-
like condition (3) for some parametersµ andT . Then, there
exist coordination gainskP andkI ensuring that there is a
finite timeTb ≥ 0 such that the bounds

|xi(t)− xj(t)| ≤ αη∆ ,

|ẋi(t)− ρ| ≤ αρ∆ ,

hold for all t ≥ Tb and some constantsαη, αρ ∈ (0,∞).
Proof. The proof is omitted due to space limitations.�

V. SIMULATION RESULTS

We now present simulation results illustrating the theo-
retical findings of the paper. To this end, we consider a
network of 5 agents with dynamics (1). At a given timet,
the information flow is characterized by one of the graphs
in Figure2; note that all four graphs arenot connected. The
control objective is to design a distributed PI protocol that
solves the consensus problem (2) with ρ = 1 (in a practical
sense). In all of the simulations, the initial coordination-state
vectorx0 and the disturbance vectord are given by

x0 = [−1, 2, 4, −4, 3 ]
⊤

, d = [ 0, 5, −3, 4, 1 ]
⊤

.

To solve the consensus problem, we add 2 virtual agents
to the network, and implement the (quantized) protocol (9)
with PI gainskP = 0.60 andkI = 0.15, and initial integrator
state χ0 = 0. Figure 3 presents the computed evolution
of the closed-loop collective dynamics with quantizer step
size∆ = 0.3 (note that this step size verifies inequality (12)).
The figure shows the time evolution of the coordination
states, their time-derivative, the integrator states, andthe
2-norms of the consensus error statesζ1(t) and ζ2(t).
Additionally, Figure4 shows an estimate of the QoS of both
the original network and the extended network, computed as

µ̂(t) := λmin

(

1
n

1
T

∫ t

t−T
QnL0(τ)Q

⊤
ndτ

)

, t ≥ T ,

µ̂nℓ
(t) := λmin

(

1
N

1
T

∫ t

t−T
QNL(τ)Q⊤

Ndτ
)

, t ≥ T ,

with T = 0.25 sec. The results demonstrate that the PI dis-
tributed protocol allows the followers to ‘learn’ the reference
rate commandρ and reach agreement with the leaders,
while effectively compensating for the (constant) distur-
bances present in the network. To illustrate the effect of
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Fig. 2. Network topologies.
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the QoS on the convergence rate of the collective dynamics,
Figure5 presents convergence times1 (normalized to the case
of 2 leaders and complete graph as network topology) as a
function of the parameterµ (with T = 0.25 sec). The figure
shows that the speed of convergence decreases with(i) the
QoS of the network and(ii) the addition of virtual agents.
The latter can be explained by the reduction of the QoS of the
extended network as virtual agents are added (see Lemma1).
Notice that these results are consistent with Theorem1.
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Fig. 5. Convergence time of the collective dynamics (normalized to the case
of 2 leaders and complete graph as network topology;tnorm = 28.4 sec).

Next, we use the same simulation scenario to illustrate
the importance of adding virtual agents to the network. For
this purpose, we consider the network of 5 agents above and
use protocol (4) to drive agents 1 and 2, while agents 3, 4,
and 5 are driven with protocol (5)-(6). The key difference
with the simulation in Figure3 is thus that protocol (4)
is applied directly to the (uncertain) agents, rather than to

1Convergence timeis defined here as the time it takes for the 2-norm of
the consensus error stateζ(t) to converge to a 2%-tube of its initial value.

the corresponding (disturbance-free) virtual agents, which are
not implemented in this case. Figure6 shows the evolution of
the collective dynamics under the same information flow (see
Figure 4) and with quantizer step size∆ = 0.3. As can be
seen, the agents do not reach agreement and the coordination
states do not evolve at the desired reference rateρ = 1.

The same network of 5 agents and information flow are
now used to verify that the multi-leader PI protocol (with
virtual agents) is robust to the loss of a leader. In this case,
we simulate the sudden loss of agent 2, which is one of
the leaders. Figure7 presents the response of the collective
dynamics, which shows that, despite the loss of one of the
leaders, the PI protocol is still able to solve the coordination
problem (2). We note that, for the agents to reach the desired
agreement, it is required that the resulting information flow
still satisfy a PE-like condition similar to (3).

Finally, the same scenario is used to illustrate the ex-
istence of undesirable attractors in the presence of coarse
quantization. For this purpose, we change the quantizer step
size to∆ = 3. The computed response of the closed-loop
collective dynamics is shown in Figure8. In this case, the
agents do not reach the desired agreement and, in fact,
the solution converges to a neighborhood2 of one of the
(Krasovsky) equilibrium points characterized by (11).

VI. CONCLUSIONS

In this paper we analyzed the convergence properties of
a distributed PI protocol to coordinate a network of agents
subject to constant disturbances. We addressed the situation
where each agent transmits only its coordination state to only

2Notice that the results in SectionIV-B are derived for network topologies
that are both static and connected; instead, the simulations presented here
consider a time-varying information flow.
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Fig. 8. Collective closed-loop dynamics with
coarse quantization(∆ = 3).

a subset of the other agents, as determined by the network
topology. Furthermore, we considered the case where the
graph that captures the information flow is not connected
during some interval of time or even fails to be connected at
all times. We also analyzed the convergence properties of the
protocol when the agents exchange quantized measurements.
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APPENDIX

CLOSED-LOOPCOLLECTIVE DYNAMICS

From the definition ofζ1(t) andζ2(t) and the coordination-state
dynamics, it follows that

ζ̇1(t) = −kPQNL(t)x(t) + ρQN1N +QN

[

0

ζ2(t)

]

= −kPQNL(t)x(t) +QNCζ2(t) .

The properties of the projection matrixΠN , along with the fact
thatQNQ⊤

N = IN−1, imply that

ζ̇1(t) = −kPQNΠNL(t)ΠNx(t) +QNCζ2(t)

= −kPQNQ
⊤

NQNL(t)Q⊤

NQNx(t) +QNCζ2(t)

= −kP L̄(t)ζ1(t) +QNCζ2(t) .

(13)

Similarly, it follows that

ζ̇2(t) = −kIC
⊤
L(t)x(t) = −kIC

⊤
Q

⊤

N L̄(t)ζ1(t) . (14)

Equations (13) and (14) lead to the dynamics (8).


